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Abstract. We study the motion of a spin- 1
2 particle in a scalar as well as a magnetic field within

the framework of supersymmetric quantum mechanics. We also introduce the concept of shape
invariant scalar and magnetic fields and it is shown that the problem admits exact analytical solutions
when such fields are considered.

1. Introduction

The concept of supersymmetry in quantum mechanical models was first introduced by
Nicolai [1]. A few years later Witten introduced supersymmetric quantum mechanics
(SUSYQM) [2] as a laboratory to examine supersymmetry breaking in quantum field theoretical
models. Subsequently SUSYQM has proved to be interesting in its own right and has been
studied by many authors from different points of view [3, 4].

Over the years it has been shown [3,4] that SUSYQM plays an important role in obtaining
exact solutions of quantum mechanical problems. In fact, all solvable problems of quantum
mechanics are either supersymmetric (SUSY) or can be made so. Now, among the various
exactly solvable potentials there is a certain class of potentials which are characterized by a
property known as shape invariance [5]. Potentials which are shape invariant satisfy certain
conditions and it has been shown [3–5] that solutions of the Schrödinger equation with any
shape invariant potential can be obtained in a trivial manner without solving the differential
equation. In fact, shape invariance is a sufficient condition for exact solvability.

In this paper our aim is to use the formalism of SUSYQM to study the one-dimensional
motion of a spin- 1

2 particle in the presence of a scalar potential as well as another function
which can be viewed as a ‘magnetic field’. Physically, this can be interpreted as the motion
of an electron along a quantum wire placed in a magnetic field [6, 7]. It may be noted that
SUSYQM has previously been used to study the motion of a particle in a magnetic field [8–10].
However, in the present case the problem is similar in nature to a coupled channel problem
which in the context of SUSYQM was first considered by Amado et al [11]. Subsequently a
number of similar problems have also been studied [12–15]. To solve this problem we shall
introduce a definition of shape invariance which will require not only the scalar potential but
also the magnetic field to satisfy certain conditions. Using this shape invariance property we
shall then obtain exact solutions of the problem of a spin- 1

2 particle moving in a scalar potential
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and a magnetic field. The organization of the paper is as follows: in section 2 we describe the
construction of the Hamiltonian describing the motion of a spin- 1

2 particle in a scalar potential
and a magnetic field; in section 3 we introduce the shape invariance conditions and use them
to obtain algebraically exact solutions; finally section 4 is devoted to a conclusion.

2. Supersymmetric approach to the motion of a spin- 1
2 particle on the real line

In Witten’s model of SUSYQM the Hamiltonian consists of two factorized Schrödinger
operators

H∓(z; γ ) = A±(z; γ )A∓(z; γ ) = − d2

dz2
+ W 2(z; γ )∓W ′(z; γ ) (1)

where γ denotes a set of parameters and the operators A+(z; γ ) and A−(z; γ ) are given by

A±(z; γ ) = ∓ d

dz
+ W(z; γ ) (2)

where the function W(z; γ ) is called the superpotential.
The pair of Hamiltonians in (1) are called SUSY partner Hamiltonians and each of

these Hamiltonians describes the motion of a spinless particle in one-dimensional potentials
V±(z; γ ) = W 2(z; γ )±W ′(z; γ ). Among the various potentials V±(z; γ ), those which satisfy
the relation

V+(z; γ ) = V−(z; γ1) + ε1 (3)

where γ1 = f (γ ) is a function of γ and ε1 is a constant, are called shape invariant potentials [5].
The shape invariant potentials are always exactly solvable and their solutions can be obtained
purely algebraically.

We shall now generalize Witten’s model of SUSYQM in such way that each of the
Hamiltonians H−, H+ will describe the motion of a spin- 1

2 particle in a magnetic field and
a scalar potential. In order to do this we generalize the operators A± in the following way:

A±(z; γ, β) = ∓ d

dz
+ W(z; γ ) + V (z;β)S. (4)

It may be noted that here we consider motion of the particle along the z-axis and components
of the spin operator S are Sα = σα/2 (α = x, y, z), σα being the Pauli matrices. Then SUSY
partner Hamiltonians can be obtained as in (1) and are given by

H±(z; γ, β) = − d2

dz2
+ V±(z; γ, β) + B±(z; γ, β)S (5)

where

V±(z; γ, β) = W 2(z; γ )±W ′(z; γ ) + V 2(z;β)/4 (6)

B±(z; γ, β) = 2W(z; γ )V (z;β)± V ′(z;β). (7)

The Hamiltonians H± in (5) describe a spin- 1
2 particle moving along the z-axis in a scalar

potentialV±(z; γ, β) and a magnetic field B±(z; γ, β). Let us note that, from the mathematical
point of view, this generalization of SUSY is strictly equivalent to the coupled-channel
generalization of [11] for two channels.

In the present case the Hamiltonian (5) can be thought to describe an electron moving
along the z-axis (on which the wire is situated) and placed in a magnetic field B±(x, y, z). The
resulting spin–magnetic field interaction is given by SB±(x, y, z). However, since the motion
of electron is essentially along the z-axis the effective spin–magnetic field interaction is given by
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SB±(x, y, z)|x=y=0 = SB±(z) where B±(0, 0, z) = B±(z). Obviously divB±(x, y, z) = 0
but divB±(0, 0, z) can be nonzero. We note that since divB±(x, y, z) = 0 at x = 0, y = 0
Maxwell’s equation is not violated. We further point out that for the purpose of our paper it is
not necessary to know the magnetic field B±(x, y, z) but it is sufficient to know only the value
of the magnetic field on the z-axis. For the sake of convenience we shall henceforth refer to
B±(z) as the magnetic field.

The SUSY Hamiltonian reads

H =
(
H+ 0
0 H−

)
= {Q+,Q−} (8)

where the supercharges Q+ and Q− have the form

Q+ = A− ⊗ σ + Q− = A+ ⊗ σ−. (9)

The supercharges and SUSY Hamiltonian fulfil the well known N = 2 SUSY algebra

{Q+,Q−} = H [Q±, H ] = 0 (Q±)2 = 0. (10)

Note that in the present case the SUSY Hamiltonian and supercharges act on a four component
wavefunction. The standard Witten model of SUSYQM can be reproduced by setting V = 0.

The Hamiltonians H+ and H− have exactly the same energy levels (perhaps with the
exception of the zero-energy state). For the zero-energy ground state the following scenarios
are possible: (1) the zero-energy ground state does not exist (broken SUSY); (2) the zero-energy
ground state exists for one of the Hamiltonians H− or H+ (exact SUSY); (3) the zero-energy
ground state exists for both HamiltoniansH− andH+ (exact SUSY). In a previous paper [15] it
was shown that this last scenario can be realized when a particle moves in a rotating magnetic
field and a zero scalar potential. For the standard Witten model of SUSYQM such a situation
arises when the superpotential is a periodic function [16, 17].

In this paper we shall consider the case when the zero-energy ground state exists for one
of the Hamiltonians H− or H+, say for H−. In this case the eigenvalues E±

n and eigenfunctions
ψ±
n of the Hamiltonians H± are related by the following SUSY transformations:

E−
n+1 = E+

n E−
0 = 0 (11)

ψ−
n+1 = 1√

E+
n

A+ψ+
n (12)

ψ+
n = 1√

E−
n+1

A−ψ−
n+1. (13)

In equations (12) and (13) the operatorsA± are (2×2)matrices and the wavefunctionsψ±
n

are two-component wavefunctions. As a result equations (12) and (13) are matrix differential
equations although in appearance they look similar to the standard SUSY transformations [3,4].

3. Shape invariant potentials and magnetic fields

In this section we shall generalize the idea of shape invariance for obtaining the exact solution
of the eigenvalue problem for a spin- 1

2 particle moving in both a scalar potential as well as a
magnetic field. We begin with the eigenvalue problem corresponding to the Hamiltonian H−
with superpotentialsW = W(z, γ ), V (z, β)which depend on some parameters γ andβ. Since
the zero-energy ground state of this Hamiltonian is annihilated by the operator A−(z; γ, β) we
have

A−(z; γ, β)ψ−
0 (z; γ, β) = 0. (14)
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Note that in the case of the standard Witten model of SUSY quantum mechanics this equation
is a single first-order differential equation and can be easily solved, but in the present case the
operatorA− is a (2×2)matrix differential operator and therefore the above equation is a set of
two first-order coupled differential equations. Therefore, in general the ground state cannot be
obtained in terms of the superpotentials. This is similar to the situation in SUSY quaternionic
quantum mechanics [18]. We shall return to the problem of determining the ground state later.
For the time being let us assume that we have a solution of equation (14).

Now let us consider the SUSY partner of H−(z; γ, β), i.e. H+(z; γ, β). If we calculate
the ground state ofH+(z; γ, β)we immediately find the first excited state ofH−(z; γ, β) using
the SUSY transformations (11)–(13). Now in order to calculate the ground state of H+ let us
rewrite it in the form

H+(z; γ, β) = H−(z; γ1, β1) + ε1 = A+(z; γ1, β1)A
−(z; γ1, β1) + ε1 ε1 > 0 (15)

where ε1 is the factorization energy. The operators A±(z; γ1, β1) corresponding to
H−(z; γ1, β1) have the same form as in (4) but with superpotentials W = W(z, γ1),
V = V (z, β1).

We note that the wavefunction of the ground state of H+(z; γ, β) is also the wavefunction
of the ground state of H−(z; γ1, β1), i.e., ψ+

0 (z, γ, β) = ψ−
0 (z, γ1, β1), and it satisfies the

equation

A−(z; γ1, β1)ψ
−
0 (z, γ1, β1) = 0. (16)

Using the SUSY transformations we can now obtain the energy level and corresponding
wavefunction of the first excited state of the Hamiltonian H−(z; γ, β):

E−
1 = ε1 ψ−

1 = 1√
ε1
A+(z, γ, β)ψ−

0 (z, γ1, β1). (17)

From (15) we can now obtain the conditions of shape invariance involving the
superpotential and the magnetic field. In explicit form these conditions read

W 2(z; γ ) + W ′(z; γ ) + V 2(z;β)/4 = W 2(z; γ1)−W ′(z; γ1) + V 2(z;β1)/4 + ε1 (18)

2W(z; γ )V (z;β) + V ′(z;β) = 2W(z; γ1)V (z;β1)− V ′
1 (z;β1). (19)

Equation (18) is the condition for shape invariant scalar superpotential while (19) is the equation
for shape invariant magnetic field. Comparing with equation (3) we find that in the present
case shape invariance conditions consist of four equations rather than a single one.

In general it is very difficult to solve these equations for superpotentials (magnetic fields)
when an arbitrary magnetic field (superpotential) is prescribed. However when we consider
some specific superpotential and magnetic field solutions of equations (18) and (19) can still
be obtained. To this end let us choose V in the form

V = g(z)a + βb (20)

where a and b are perpendicular unit vectors, i.e. ab = 0. Then equation (18) reads

W 2(z; γ ) + W ′(z; γ ) + β2/4 = W 2(z; γ1)−W ′(z; γ1) + β2
1/4 + ε1 (21)

and the vector equation (19) splits into two scalar equations

2W(z; γ )g(z) + g′(z) = 2W(z; γ1)g(z)− g′(z) (22)

W(z; γ )β = W(z; γ1)β1. (23)

Then, from (22) we obtain

g(z) = λe
∫ z
(W(z;γ1)−W(z;γ )) (24)
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where λ is some constant. Here it is important to note that since g(z) does not depend on the
parameters γ the difference between the new and the old superpotentials (W(z; γ1)−W(z; γ ))
also does not depend on these parameters.

In order to satisfy equation (23) we now choose

W = γf (z) (25)

which leads to the following relation between the parameters:

γβ = γ1β1. (26)

Note that only superpotentials of the form (25) ensure that the difference (W(z; γ1) −
W(z; γ )) is independent of the parameter γ . Thus the superpotentials (20) and (25) lead
to shape invariant scalar potential and magnetic field and so the corresponding eigenvalue
problem can be solved exactly.

To find the exact solutions we now continue the shape invariant construction recursively
and obtain the energy levels and the corresponding wavefunctions ofH− in the following form:

E−
n =

n∑
i=0

εi ε0 = 0 (27)

ψ−
n (z; γ, β) = C−

n A
+(z; γ, β) . . . A+(z; γn−2, βn−2)A

+(z; γn−1, βn−1)ψ
−
0 (z; γn, βn) (28)

where C−
n are normalization constants, ψ−

0 (z; γn, βn) is the zero-energy eigenfunction of
H−(z; γn, βn) which satisfies the equation A−(z; γn, βn)ψ−

0 (z; γn, βn) = 0, A±(z; γn, βn)
and H−(z; γn, βn) are of the form (4) and (5) respectively, with superpotentials W(z; γn),
V (z;βn). In our notations γ0 = γ and β0 = β.

In explicit form the equation determining ψ−
0 (z, γn, βn) reads(

d

dz
+ γnf (z) + (g(z)a + βnb)S

)
ψ−

0 (z, γn, βn) = 0. (29)

The superpotential γnf (z) can be eliminated from this equation by using the following
transformation:

ψ−
0 (z, γn, βn) = φ(z, βn)e

− ∫
γnf (z) (30)

where φ is a two-component function which satisfies the equation(
d

dz
+ (g(z)a + βnb)S

)
φ(z, βn) = 0. (31)

Let us now choose a parallel to the z-axis, b parallel to the x-axis. Then equation (31),
which is a set of two first-order coupled differential equations, can be rewritten in the form

a−φ1(z, βn) = −βn

2
φ2(z, βn) (32)

a+φ2(z, βn) = βn

2
φ1(z, βn) (33)

where the operators a± are given by

a± = ∓ d

dz
+ g(z)/2. (34)

The above set of first-order coupled equations can easily be transformed into second-order
equations for φ1 and φ2 and are given by

a+a−φ1(z, βn) = h−φ1 = −β2
n

4
φ1(z, βn) (35)

a−a+φ2(z, βn) = h+φ2 = −β2
n

4
φ2(z, βn). (36)
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It is interesting to note that equations (35) and (36) have the form of eigenvalue equations
corresponding to H± of one-dimensional SUSYQM (see equation (1)) with superpotential
g(z)/2 and −β2

n/4 can be treated as energy which is negative in the present case. The solutions
of equations (35) and (36) need not necessarily be square integrable functions. However
nonsquare integrable solutions of (35) and (36) can still be used to obtain physical solutions
of the original eigenvalue equation (see equation (30)).

3.1. Examples

Case 1. The simplest superpotential which we can choose is W = γ z, but in this case
from (21) it follows that γ1 = γ and we find from (24) that g = const. As a result we obtain a
magnetic field which does not change its direction. Therefore this case can be reduced to the
standard Witten model of SUSYQM.

Case 2. Let us now consider the following superpotential:

W = γ tanh(z) γ > 0. (37)

Then iterating the shape invariant condition (21) n times we obtain

εn = γ 2
n−1 − γ 2

n + (β2
n−1 − β2

n)/4 (38)

γn−1(γn−1 − 1) = γn(γn + 1). (39)

Equation (39) have two solutions with respect to γn, but only one of them is acceptable from
the point of view of square integrability of the wavefunction and this is given by

γn = γn−1 − 1 = γ − n. (40)

Now iterating the relation (26) n times we obtain

βn = γn−1

γn
βn−1 = γ

γn
β. (41)

To determine g(z) we use (24) and obtain

g(z) = λ

cosh(z)
. (42)

From (42) it is seen that the function g(z) indeed does not depend on the parameters appearing
in the superpotential. Now using W(z; γ ) and g(z) we can calculate the scalar potential and
the magnetic field in which the spin- 1

2 particle is moving:

V± = λ2/4 − γ (γ ∓ 1)

cosh2(z)
+ γ 2 + β2 (43)

B± = λ2

2
(2γ ∓ 1)

tanh(z)

cosh(z)
a + 2γβ tanh(z)b. (44)

Now let us study the eigenvalue equations (35) and (36). To determine whether the
spectrum is finite or infinite it is now necessary to establish the maximum value of n. In the
present case equation (35) reads(

− d

dz
+

λ

2 cosh(z)

) (
d

dz
+

λ

2 cosh(z)

)
φ1(z, βn) = −β2

n

4
φ1(z, βn). (45)

The asymptotic behaviour of the solutions of equation (45) at |z| → ∞ is given by

φ1(z, βn) ∼
|z|→∞

const e±βnz/2. (46)
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Using (32) for the second component we obtain

φ2(z, βn) ∼
|z|→∞

∓const e±βnz/2. (47)

From (46) and (47) it is seen that the solutions are not square integrable. Now to determine
the asymptotic behaviour of ψ0(z, γn, βn) we use (46) and (47) in (30) and obtain

ψ−
0 (z, γn, βn) ∼

|z|→∞
const

(
1

∓1

)
e±βnz/2

coshγn(z)
. (48)

Then from the condition of square integrability of ψ−
0 (z, γn, βn) we obtain

γn > |βn|/2. (49)

Thus it follows from (49) that

n < γ −
√
γ |β|/2. (50)

Energy levels of the Hamiltonian H−(z; γ, β) are then given by

E−
n = γ 2 − (γ − n)2 +

β2

4

(
1 − γ 2

(γ − n)2

)
. (51)

From (48) it follows that there are two independent square integrable solutions of
equation (29) and as a result the ground state of H−(z;βn, γn) is twofold degenerate. Now,
from (28) and (29) it can be shown that each energy level E−

n is doubly degenerate.
We now proceed to determine the eigenfunctions of H−(z;βn, γn) in explicit form. In

order to do this we need to have the general solutions of equation (45). To solve this equation
we first transform it to the equation for hypergeometric functions. Let us introduce a new
variable x = sinh(z). Then equation (45) becomes[

−(1 + x2)
d2

dx2
− x

d

dx
+
λ2

4

1

1 + x2
+
λ

2

x

1 + x2

]
φ1 = −β2

n

4
φ1. (52)

We now introduce a new function f defined by the relation

φ1 = f e− λ
2 arctan(x) (53)

and use a new variable ξ = (1 − ix)/2 to obtain from equation (45)[
(1 − ξ)ξ

d2

dξ 2
+

(
1

2
− i

λ

2
− ξ

)
d

dξ

]
f = −β2

n

4
f. (54)

This equation has two linearly independent solutions:

f (1) = F(a, b; c; ξ) (55)

f (2) = ξ 1−c(1 − ξ)c−a−bF (1 − a, 1 − b; 2 − c; ξ) (56)

where F(a, b; c; x) is the hypergeometric function and a = βn/2, b = −βn/2, c = 1
2 − iλ/2.

Then using (28) we obtain in explicit form two eigenfunctions which correspond to the
same energy level given by (51). As a result we conclude once more that energy levels of
H−(z;β, γ ) are twofold degenerate.

Now let us analyse the reason for this double degeneracy of the energy levels of
H−(z; γ, β). Note however that this double degeneracy is not related to the SUSY of the
original Hamiltonian, which consists of two partner HamiltoniansH−(z; γ, β) andH+(z; γ, β).
The degeneracy of H−(z; γ, β) is related to the spin degrees of freedom of the Hamiltonian
and also to the existence of an additional integral of motion T = Iσy in the case when
W(−z) = −W(z), where I is a parity operator and acts according to If (z) = f (−z). Also
T 2 = 1 and thus this operator has two eigenvalues ±1. We also note that the operator of
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complex conjugation R, acting according to Rf = f ∗, commutes with A±(z; γi, βn) in the
case when a is parallel to the z-axis and b is parallel to the x-axis. These operators satisfy the
(anti)commutation relations

TA±(z;βn, γn) + A±(z;βn, γn)T = 0 (57)

T R + RT = 0 (58)

RA±(z;βn, γn)− A±(z; γn, βn)R = 0. (59)

Furthermore the operators R and T commute with the Hamiltonian H−(z; γn, βn)
[T ,H−(z; γn, βn)] = [R,H−(z; γn, βn)] = 0. (60)

Let us now demonstrate using the above algebra that the zero-energy level forH−(z; γn, βn)
is doubly degenerate. To show this let us suppose that we have at least one zero-energy
ground state. As a result of the commutation relation (60) this state can be chosen also as an
eigenfunction of the operator T . Thus the zero-energy ground state satisfies the equations

T ψλ = λψλ (61)

A−ψλ = 0 (62)

where λ takes one of the values 1 or −1. Then from (58) and (61) it follows that Rψλ = ψ−λ

Now operating R from the left on (62) and using (59) we obtain

A−Rψλ = A−ψ−λ = 0. (63)

Thusψ−λ together withψλ are wavefunctions of the zero-energy ground state. We can conclude
that the zero-energy level of the Hamiltonian H−(z; γi, βi) is doubly degenerate. Since the
nth excited state of the Hamiltonian H−(z; γ, β) is related by (28) to the ground state of
the Hamiltonian H−(z;βn, γn) we conclude that all the energy levels of the Hamiltonian
H−(z; γ, β) are doubly degenerate. Finally, we note that as a consequence of the relation (11)
the zero-energy ground level of the full Hamiltonian (8) is doubly degenerate while the excited
levels are fourfold degenerate.

4. Conclusions

In this paper we extend the definition of shape invariance to obtain exact solutions of the
eigenvalue problem relating to the motion of a spin- 1

2 particle moving in a scalar potential and
a magnetic field. The shape invariance conditions are more complicated than in the standard
case. This is because instead of one equation for the superpotential W in the standard case we
have four equations coupling the superpotential with the components of the vector function
V . It has been shown that if we choose a superpotential and a magnetic field satisfying the
above mentioned shape invariance condition we can obtain exact analytical solutions of the
eigenvalue problem. The spectrum of the full Hamiltonian is fourfold degenerate while those
of the component Hamiltonians are doubly degenerate. We have also analysed the reasons for
this double degeneracy and it has been shown to be due to the existence of additional integrals
of motion rather than SUSY. We feel it would be of interest to find other superpotentials and
magnetic fields which are shape invariant and are thus exactly soluble.
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